什麼是後生元? 它們與益生元和益生菌有何關係?
你可能從未聽說過後生元,但在腸道健康和微生物組科學中,後生元是非常熱門的課題。益生元和益生菌可能較為人熟悉,但是這三者有著相互依存的關係,對我們的消化系統健康以至心理健康(有賴於腸腦軸線)都至關重要。 除了心理健康外,腸道微生物組還會極大地影響你的免疫、消化、代謝和心臟健康。
讓我們一起探討後生元和它們的健康益處。
什麼是後生元?
後生元是益生菌進食益生元後所衍生的副產品。 沒錯! 當你進食穀類食物或新鮮水果,這些食物中的纖維便是益生元。 當益生菌把纖維分解,將其轉化為代謝產物,便是我們所稱的後生元。
通過益生元的發酵,益生菌產生各種被稱為後生元的化合物。 短鏈脂肪酸(SCFA)、功能蛋白和胞外多醣(EPS)是可以描述為後生元的其中三個例子。
研究顯示,後生元這種功能性生物活性化合物,對你的免疫系統具有直接益處。 研究亦顯示,健康人士可以藉著後生元,優化整體健康狀況。 後生元也有助緩解異位性皮膚炎、腹瀉和嬰兒腸絞痛等症狀。
纖維缺乏症和益生菌
健康的後生元菌群由纖維開始。 纖維的進食量,對健康的腸道微生物組固然重要,但我們也需要不同種類的纖維,以產生良好健康所需的後生元代謝物。
多吃各式各樣的植物性食物,可以攝取更大量和多元化的纖維,從而強化你的益生元健康。這會對你的後生元狀態產生直接影響。 水果、蔬菜、穀物和豆類食品,都是纖維的良好來源。
每天應該吃大約25克纖維,但不要超過50克。 進食過多纖維會引起諸如腹脹、食慾下降、抽筋和排便困難等症狀,並可能有損磷和鈣的吸收。
健康腸道細菌—良好健康的基礎
從強大的免疫系統到良好的心理健康,健康的腸道微生物組與人體健康具有密切關係。 微生物組是指在特定環境中生存的微生物。 儘管在你身體內和皮膚上,有數以萬億計的微生物(microbes),包括真菌、細菌和病毒;但僅在你的腸道內,就有大約100萬億的微生物。
這些微生物大多存在於大腸中一個名為盲腸的部位。 在人體內,單是細菌細胞便有大約40萬億個,這實在令人驚嘆,尤其是當你意識到自己體內的人體細胞只有30萬億個時。 單單這個事實,便彰顯了腸道菌群的重要性。
這些細菌當中,有部分被證明是有益的,我們稱之為好細菌或友好細菌;另一些細菌則有害,並可能導致生病。
當我們沿著母親的產道出生時,便初次接觸到微生物組。 隨著我們不斷成長,微生物數量變得越來越多,種類亦更繁多。
雙歧桿菌是一種友好的微生物,它很早便開始在新生嬰兒的腸道中生長,以幫助消化母乳中的糖分。 這種細菌在整個生命中都很重要,因為它會產生SCFA—維持健康所必需的後生元。
隨著年齡增長,更多細菌會留在你的腸道中,帶來消化、免疫、心臟、新陳代謝和精神健康方面的益處。
健康微生物組的5大健康益處
強大的腸道菌群被證明對整體健康至關重要。
消化健康
通過消化纖維,好細菌或益生菌成為建構良好後生元健康的基石。 這些消化纖維的細菌,所產生的SCFA有助於代謝脂肪和碳水化合物。 它們是結腸內壁細胞的主要能量來源。
體重增加可能是由腸道微生態失調所引至,亦即腸道中的好細菌和壞細菌出現失衡。 腸道微生態失調也可能引起疾病,例如炎症性腸病(IBD)和腸易激綜合症(IBS)。 腸道微生態失調的相關症狀包括身體不適、腹脹和抽筋等。
同時攝取雙歧桿菌和乳酸桿菌兩種益生菌,可以幫助避免IBS和IBD所引起的不適。
免疫健康
腸道菌群對免疫健康至關重要。 它有助調節體內的免疫穩態(或平衡)。 腸道微生物群落的變化,可能導致免疫系統失調,不僅引致腸道自體免疫性疾病,還可能引致影響全身系統的自體免疫性疾病。
由於腸道微生物組與免疫系統之間存在重要的聯繫,研究人員目前正研究新的微生物療法,作為自體免疫性疾病和其他疾病的潛在修復方法。
心臟健康
健康腸道有助促進心臟健康。 一項研究發現,腸道菌群可促進良好的膽固醇—高密度脂蛋白(HDL)和甘油三酯。 作為一種益生菌,服用乳酸桿菌也可能有助於減少膽固醇水平。 總膽固醇水平下降,加上好膽固醇水平上升,對心臟和血管健康十分重要。
高膽固醇和高密度脂蛋白水平降低,會引致動脈壁形成斑塊,可能導致心藏病發作和中風。紅麴米是一種天然補充品,有助減少膽固醇水平。
氧化三甲胺 (TMAO) 會隨著腸道中不友好細菌代謝膽鹼和左旋肉鹼而產生。 TMAO是可能導致動脈阻塞的化合物。 動物製食品含有膽鹼和左旋肉鹼,尤其是紅肉。
減少食用動物產品並保持健康的微生物組,可以幫助減低腸道細菌產生TMAO的機率。
代謝健康
糖代謝病和血糖水平也會受到腸道菌群影響。 研究發現,即使參與者進食相同的餐膳,他們進餐後的血糖水平也有很大差異。 研究人員指出,腸道微生物組的不同,可能是造成這種差異的原因。
而另一項研究發現,腸道微生物組的多樣性,會在1型糖代謝病發作之前大大降低。 他們並發現,在1型糖代謝病發作之前,各類型的不健康細菌水平都會升高。
精神健康
近年來,腸腦軸線已經成為許多研究的主題。 其中一個備受討論的議題,是發現腸道細菌對大腦神經遞質的產生起著關鍵作用。
神經遞是大腦中的化學物質,可以抑製或促進體內各種生理作用。 神經遞質血清素主要在腸道中合成。 血清素在體內具有多種功能,包括調節情緒和促進幸福安康感。 它還有助於睡眠和消化功能。
如何優化你的後生元微生物組
益生元
要擁有健康的微生物組,你首先必須擁有良好的益生元。
富含益生元的食物包括菊粉等纖維,以及諸如低聚果糖(FOS)等其他化合物。 FOS不僅支持健康的腸道菌群,而且還有助於減少膽固醇,並支持健康的免疫系統。
有證據顯示,FOS和菊粉可刺激腸道中雙歧桿菌的生長。 雙歧桿菌促進腸道的抑製作用,有助於抵抗急性感染。
另一種促進雙歧桿菌生長的強大益生元是麥麩,即全麥穀物的麩皮。 麥麩提供大量的阿拉伯低聚木糖(AXOS)。 除了支持友好細菌的生長,AXOS還具有抗氧的益處。
菊粉是一種纖維,它天然存在於洋蔥、大蒜、菊芋、蒲公英嫩葉、蘆筍和菊苣根之中。 如果你的飲食中沒有攝取足夠富含菊粉的食物,你可以選擇補充菊粉。
果膠和β-葡聚醣
果膠和β-葡聚醣都是有助於腸胃好幫手的益生元。 蘋果、梨、番石榴、布冧和柑橘類水果等有機食品均富含果膠纖維。
要提升β-葡聚醣水平,可以多吃燕麥、大麥、海藻,以及靈芝、舞茸和香菇等不同品種的蘑菇。
補充果膠和β-葡聚醣也有助支持益生元。
葡甘露聚醣
多吃蒟蒻,它含有豐富的葡甘露聚醣纖維,可以支持健康和多樣化的後生元。 葡甘露聚醣支持腸道中好細菌的生長,同時有助減少膽固醇、支持體重減輕、優化免疫功能和減少排便困難。
要加強支持力度,可以服用葡甘露聚醣補充品。
發酵食品
食用克菲爾、乳酪、康普茶和酸菜等發酵食品,可以提高益生菌水平,優化你的生後元狀態。 發酵食品主要提高乳酸桿菌水平。 它們還可能減少腸道中有害細菌的水平。
避免阿斯巴甜等人造甜味劑,也可以支持你的生後元健康。 人造甜味劑會刺激腸道微生物群中不友好細菌(包括腸桿菌科)的生長。
特後,如果可以的話,應避免服用細菌抑制劑。 細菌抑制劑會破壞腸道中的好細菌和壞細菌。 僅在有醫學需要時才服用它們。
總結
後生元是良好整體健康的基礎。 大腦、心臟、免疫細胞和腸道細胞,皆有賴後生元才能發揮上佳水平。
保持良好後生元狀態的上佳方法,是食用更多的益生元,並增加益生菌的菌群。 只有具備良好的益生元和益生菌狀態,才能充分體驗健康後生元微生物組的益處。
參考文獻:
- Wegh CAM, Geerlings SY, Knol J, Roeselers G, Belzer C. Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. Int J Mol Sci. 2019;20(19):4673. Published 2019 Sep 20. doi:10.3390/ijms20194673
- Kumar VP, Prashanth KV, Venkatesh YP. Structural analyses and immunomodulatory properties of fructo-oligosaccharides from onion (Allium cepa). Carbohydr Polym. 2015;117:115-122. doi:10.1016/j.carbpol.2014.09.039
- Costa GT, Abreu GC, Guimarães AB, Vasconcelos PR, Guimarães SB. Fructo-oligosaccharide effects on serum cholesterol levels. An overview. Acta Cir Bras. 2015;30(5):366-370. doi:10.1590/S0102-865020150050000009
- Kolida S, Tuohy K, Gibson GR. Prebiotic effects of inulin and oligofructose. Br J Nutr. 2002;87 Suppl 2:S193-S197. doi:10.1079/BJNBJN/2002537
- Chen HL, Cheng HC, Liu YJ, Liu SY, Wu WT. Konjac acts as a natural laxative by increasing stool bulk and improving colonic ecology in healthy adults. Nutrition. 2006;22(11-12):1112-1119. doi:10.1016/j.nut.2006.08.009
- Tester RF, Al-Ghazzewi FH. Beneficial health characteristics of native and hydrolysed konjac (Amorphophallus konjac) glucomannan. J Sci Food Agric. 2016;96(10):3283-3291. doi:10.1002/jsfa.7571
- François IE, Lescroart O, Veraverbeke WS, et al. Effects of wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal parameters in healthy preadolescent children. J Pediatr Gastroenterol Nutr. 2014;58(5):647-653. doi:10.1097/MPG.0000000000000285
- Clemens R. et al. Filling America’s Fiber Intake Gap: Summary of a Roundtable to Probe Realistic Solutions with a Focus on Grain-Based Foods. J Nutr. 2012 July; 142(7): 1390S-1401S.
- Berdy J. Bioactive Microbial Metabolites. J. Antibiot. 2005;58(1):1.26.
- Shah M, Chandalia M, Adams-Huet B, et al. Effect of a high-fiber diet compared with a moderate-fiber diet on calcium and other mineral balances in subjects with type 2 diabetes. Diabetes Care. 2009;32(6):990-995. doi:10.2337/dc09-0126
- Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016;14(8):e1002533. Published 2016 Aug 19. doi:10.1371/journal.pbio.1002533
- Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe. 2014;16(3):276-289. doi:10.1016/j.chom.2014.08.014
- Arboleya S, Watkins C, Stanton C, Ross RP. Gut Bifidobacteria Populations in Human Health and Aging. Front Microbiol. 2016;7:1204. Published 2016 Aug 19. doi:10.3389/fmicb.2016.01204
- Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front Microbiol. 2016;7:185. Published 2016 Feb 17. doi:10.3389/fmicb.2016.00185
- Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214. doi:10.1126/science.1241214
- Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3(1):4-14. doi:10.4161/gmic.19320
- Fu J, Bonder MJ, Cenit MC, et al. The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids. Circ Res. 2015;117(9):817-824. doi:10.1161/CIRCRESAHA.115.306807
- Shimizu M, Hashiguchi M, Shiga T, Tamura HO, Mochizuki M. Meta-Analysis: Effects of Probiotic Supplementation on Lipid Profiles in Normal to Mildly Hypercholesterolemic Individuals. PLoS One. 2015;10(10):e0139795. Published 2015 Oct 16. doi:10.1371/journal.pone.0139795
- Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57-63. doi:10.1038/nature09922
- Zhu W, Wang Z, Tang WHW, Hazen SL. Gut Microbe-Generated Trimethylamine N-Oxide From Dietary Choline Is Prothrombotic in Subjects. Circulation. 2017;135(17):1671-1673. doi:10.1161/CIRCULATIONAHA.116.025338
- Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576-585. doi:10.1038/nm.3145
- Zeevi D, Korem T, Zmora N, et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell. 2015;163(5):1079-1094. doi:10.1016/j.cell.2015.11.001
- Kostic AD, Gevers D, Siljander H, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 2015;17(2):260-273. doi:10.1016/j.chom.2015.01.001
- O'Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32-48. doi:10.1016/j.bbr.2014.07.027
- Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis [published correction appears in Cell. 2015 Sep 24;163:258]. Cell. 2015;161(2):264-276. doi:10.1016/j.cell.2015.02.047
- Palmnäs MS, Cowan TE, Bomhof MR, et al. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS One. 2014;9(10):e109841. Published 2014 Oct 14. doi:10.1371/journal.pone.0109841
免責聲明:本健康中心不提供診斷⋯